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Abstract. One important application of mobile robots is searching a geographical 
region to locate the origin of a specific sensible phenomenon. Mapping mine fields, 
extraterrestrial and undersea exploration, the location of chemical and biological 
weapons, and the location of explosive devices are just a few potential applications. 
Teams of “robotic bloodhounds” have a simple common goal; to converge on the 
location of the source phenomenon, confirm its intensity, and to remain aggregated 
around it until directed to take some other action. In cases where human intervention 
through teleoperation is not possible, the robot team must be deployed in a territory 
without supervision, requiring an autonomous decentralized coordination strategy. This 
paper presents the alpha-beta  coordination strategy, a family of collective search 
algorithms that are based on dynamic partitioning of the robotic team into two 
complementary social roles according to a sensor-based status measure. Robots in the 
alpha  role are risk-takers, motivated to improve their status by exploring new regions 
of the search space.  Robots in the beta  role are motivated to improve but are 
conservative, and tend to remain aggregated and stationary until the alpha robots have 
identified better regions of the search space. Roles are determined dynamically by each 
member of the team based on the status of the individual robot relative to the current 
state of the collective. Partitioning the robot team into alpha and beta roles results in a 
balance between exploration and exploitation, and can yield collective energy savings 
and improved resistance to sensor noise and defectors. Alpha robots waste energy  
exploring new territory, and are more sensitive to the effects of ambient noise and to 
defectors reporting inflated status. Hypothetically, beta robots conserve energy by 
moving in a direct path to regions of confirmed high status. Beta robots also resist the 
effects of noise and defectors by averaging status data, but must rely on alpha robots to 
improve their performance. Alpha-beta is a reactive strategy that requires directed 
communication of instantaneous sensor data among team members, but does not rely 
on a domain model. Alpha-beta coordination is a new and ongoing research effort. We 
present the basic concepts behind the alpha-beta strategy and exhibit preliminary 
simulation data that illustrate the collective search modes in an idealized search domain.   
1 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin 
Company, for the United States Department of Energy under Contract DE-AC04-
94AL85000.



1 Introduction and Motivation
Many challenging new applications in robotics involve distributed search and sensing 
by a robotic team. Mapping mine fields, extraterrestrial and undersea exploration, 
exploring volcanoes, the location of chemical and biological weapons, and the location 
of explosive devices are just a few. This paper presents initial but ongoing research 
into the issues of collective and emergent behaviors in teams of mobile robots tasked 
with locating specific sensory phenomena. Our motivation for this line of inquiry is 
the engineering and eventual deployment of large numbers of inexpensive, expendable 
sensory robots in hazardous or hostile environments, with a particular emphasis on 
sensing concentrations of hazardous chemicals in terrestrial environments. The problem 
suite of interest involves the most demanding of sensing environments; rough terrain 
with obstacles, non-stationary and dilute chemical concentrations, deliberate 
interference by hostile robots, and limited opportunities for human interaction with the 
robots through teleoperation [Klarer 1998]. Because human intervention is not always 
possible in these environments, decentralized coordination schemes which feature 
collective decision-making by individual autonomous robots are the most promising 
avenues of research.  Overcoming the limitations of crude but inexpensive chemical 
sensors by using distributed signal processing algorithms that utilize shared data from a 
large number of agents is another important concept to be investigated.  An important 
issue not generally addressed in robotics research is deliberate and subtle interference 
with the goals of the robotic team by impostor robots.        
    Geographical search problems that use robotic teams can be divided into three broad 
classes: source identification, source mapping, and source localization [Goldsmith and 
Robinett 1998a]. Robots performing source identification must answer the question 
“Does region R contain phenomenon X”?  A simple yes or no is an adequate answer, 
and the task can in principle be accomplished by a robot team without actually 
localizing the target phenomenon. Source mapping requires the robot team to perform 
an exhaustive search of an area and to localize all phenomena within the region. Source 
localization problems require precise localization of a target source within a given 
region. In the simplest form of the source localization problem, a single sensible 
source is present somewhere within the search space. The search space is divided into 
two regions based on the quality of sensor data available in the region. The insensate 
region  is characterized by a low signal-to-noise ratio. Robots roaming in this region 
are without information to guide their search activities, and effective search requires 
multi-agent coordination mechanisms that involve explicit collaboration [Cao, 
Fukunaga, Kahng, and Meng 1993]. Some coordination strategies for organized 
collaborative search in zero-information environments are discussed in [Spires & 
Goldsmith 1998]. The sensate region  contains the source and is characterized by a 
signal-to-noise ratio significantly greater than unity. Robots operating in the sensate 
region have usable but noisy sensory information to guide their search.  
    Designing a mobile robot team to search a sensate region for a specific target 
phenomenon involves numerous engineering tradeoffs among robot attributes and 
environmental variables.   For example, battery-driven robots have a finite energy store 
and can only search a finite area before running down. Success at finding a target source 



with finite energy resources depends on other characteristics of the robot such as sensor 
accuracy and noise and efficiency of the locomotive subsystem, as well as properties of 
the collective such as the number of robots in the team, the use of shared information 
to reduce redundant search, and the team coordination strategy used to ensure a coherent 
search process.  

2 Alpha-beta Coordination
This paper is concerned with solving the source localization problem using a 
decentralized coordination strategy we call alpha-beta coordination.  The alpha-beta  
coordination strategy is a family of collective search algorithms that allow teams of 
communicating agents2 to implicitly coordinate their search activities through a 
division of labor based on self-selected roles and social status. In an alpha-beta team, an 
agent plays one of two complementary roles. Agents in the alpha  role are motivated to 
improve their status by exploring new regions of the search space. Agents in the beta  
role are also motivated to improve, but are conservative and tend to remain aggregated 
and stationary until the alpha agents have clearly identified better regions of the search 
space. An agent selects its current role dynamically based on its current status value 
relative to the current status values of the other team members. Status is determined by 
some function of the agent’s sensor readings, and is generally a measurement of source 
intensity at the agent’s current location. An agent’s decision cycle comprises three 
sequential decision rules: (1) selection of the current role based on the evaluation of the 
current status data; (2) selection of a specific subset of the current data; and (3) 
computation of the next heading using the selected data. Variations of these decision 
rules produce different versions of alpha and beta behaviors that lead to different global 
properties.
    Partitioning the robot team into alpha and beta roles produces a balance between 
exploration and exploitation. Alpha agents waste energy exploring low-status regions 
of the search space, but communicate valuable state information to team members that 
prevents costly reexploration of low-status regions. Alpha agents by nature seek to 
emulate and ultimately surpass the highest-performing team members and are therefore 
more sensitive to the effects of transient noise and are more susceptible to the influence 
defectors3 reporting false status values. Beta agents use energy wisely by resisting 
transient influences and moving in a direct path to high-status regions of the search 
space identified by alpha agents. Hypothetically, beta agents resist noise and defectors 
(we do not provide support for this claim herein) by selective re-sampling and 
averaging of status data, but must rely on alpha robots to improve their performance. 
Consequently, beta agents can be mislead by noise and defectors under some 
circumstances through second order effects if many of the the alpha agents are mislead.
Alpha-beta coordination relies on the following assumptions:

2 We will use the term agent hereafter to signify the generality of the alpha-beta concept 
and to stress that we have not yet  implemented the technique on actual robotic vehicles.

3 Defectors may  inadvertently misrepresent their status because of flaws, or may be 
impostors that deliberately attempt to mislead the loyal team members.  These kind of 
effects can be characterized as Byzantine failures [Lamport, Shastak, and Pease 1982].



1. Team members have a reliable communications mechanism.
 
2. The team is positioned in the (noisy) sensate region surrounding a target source.

3. The terminal goal of the team is to converge on the source target.

4. A higher status value implies a higher probability that the source is located near the 
corresponding coordinates.   

Alpha-beta agents are eusocial  [Mcfarland 1994] in nature; agents must cooperate to 
succeed. Agents always broadcast their most current sensor data as a normative 
behavior. An agent’s model of the environment is based solely on their current local 
sensory data and the current shared data obtained from the other members of the team. 
Individual agents have no sensor memory and consequently cannot locate a source 
alone. As such, the alpha-beta strategy is a reactive collective search strategy rather 
than a collaborative strategy. Agents are implicitly cooperative, and do not use explicit 
forms of collaboration. The alpha-beta strategy is a behavior-based control strategy 
closely related to the approach of Mataric [1994]. Alpha-beta teams behave in a manner 
similar to that of of simple insect societies [Kube and Zhang 1993]. Alpha-beta agents 
search without centralized leadership or hierarchical coordination. The primary 
collective mode of an alpha-beta team is to aggregate in a region of high-intensity, 
without any other objectives. Alpha-beta teams are robust to single-point fail-stop 
failures in team members; agents simply use the latest  data transmitted by other team 
members without regard to the identity of the sender.   Alpha-beta coordination requires 
a minimum of knowledge about the search environment. Agents have no prior 
assumptions about the nature of the intensity surface, its spatial coherence, gradient 
field, or any other analytical information.  As such, the alpha-beta strategy is intended 
to be as general-purpose and as assumption-free as possible. In formulating the alpha-
beta strategy, we have carefully constructed the problem context and agent capabilities 
to focus the research in a particular direction, namely away from traditional symbolic 
AI approaches and towards the dynamical systems and behavior-based/emergent 
behavior approach. This paper presents the alpha-beta concept and exhibits preliminary 
simulation data in an ideal environment. Our goal is to demonstrate collective 
coordination based on self-selected dynamical control laws that change in response to 
the collective state of the team. 

3 Alpha Beta Coordination Algorithms
A full mathematical treatment of alpha-beta coordination is in progress [Goldsmith & 
Robinett 1998b] but is beyond the scope of this paper. The current state-space 
formulation comprises a system of non-linear, time-varying difference equations of 
order N, where N is the instantaneous number of agents. The issues of primary 
importance are stability, energy efficiency, convergence, and steady-state localization 
error.  



    A simple social metaphor provides an intuitively satisfying if imprecise description 
of the basis for alpha-beta coordination algorithms. The cohesion of an alpha-beta 
society is based on a common normative goal: each agent is motivated to improve its 
social status by associating with other agents of higher status. Social status is 
determined by a scalar function of the shared sensor data communicated by other agents.  
The only assumption underlying alpha-beta algorithms is that the status function 
orders points in the search space according to the probability that a source is located at 
the point. On each decision cycle, each agent broadcasts it current social status as a 
scalar value, si, along with a location vector, vi, to all other agents, and receives their 

status values in return. An agent attempts to improve its standing through emulation 
by moving to a region occupied by agents reporting superior status. This simple goal 
pressures agents to: (1) aggregate into groups; and (2) to aggregate in the region of 
highest known status. To determine its next destination, each agent first computes the 
common ordered set V={ vi} according to the linear ordering (≤) of agents provided by 
the status readings S={si}

4. The agent uses S to partition its fellow agents into two 

castes. The alpha caste  is the set A0 of all agent positions corresponding to agents 
that have a social standing superior to agent a0: A0 = {vk|sk > s0}. The beta caste  B0 
is the set of all agent positions corresponding to agents with lower social standing than  
agent a0: B0 = {vk|sk > s0}.  The beta set B0 includes agents of equal status because an 

agent always seeks to improve its current status.  There are a variety of approaches to 
using the alpha and beta sets to generate the agent’s next heading. The vectors in the 
set A0 can be used to influence the agent to move towards its members, creating a 
social pressure to improve called alpha-pull.  The vectors in the set B0 can be used to 
influence the agent to move away from its members, creating a second social pressure 
to improve called beta-push.  Either set or V itself can be used  in a variety of ways to 
provide pressure to aggregate. Alpha-pull and beta push are heuristic in nature and do 
not necessarily lead to average improvement in arbitrary environments. Designing and 
testing different decision rules based on the data vectors in V, A0, and B0, or subsets 

thereof, is the means for investigating the different global behaviors of alpha-beta 
teams.  
    A special case of importance is when V=Ai=Bi.  In this case every agent has 
identical status, corresponding to the zero-information (maximum information entropy) 
state previously mentioned. When a zero-information state is detected, the team can 
disperse to broaden the search area by using beta-push (all members are in the beta sets 
of all other members) to compute a trajectory that leads the agents on the outer edges 
of the cohort region away from the team’s centroid.  As the density of the team 
decreases, more agents are free to move away from the centroid, eventually resulting in 
a dispersed team.  A minimum limit on team density prevents the ultimate loss of 
team coherence.  If the team members cannot find the sensate region, they must resort 
4 The unordered set of of readings can be used to compute the obvious non-uniform gradient   
estimates.  We have investigated gradient search algorithms and use them as a baseline for 
comparison of alpha-beta performance.  Some forms of alpha-beta algorithms currently 
under investigation use gradient estimates for alpha decisions.



to a collaborative search mode as mentioned previously.
    If V=ø, the agent is alone. For the purposes of this research, agents that lose 
contact with the team remain immobilized.  This “hug a tree” philosophy saves energy 
but may not lead to a reunion with the team and to eventual arrival at the target source. 
A variety of possible solo behaviors will be investigated later, including random 
search, gradient search, and using the last known heading to determine the agent’s 
trajectory.
   The general form of the alpha-beta update rule uses a linear combination of the 
vector data in V:

                v i(k+1) = v i(k) + a(k)[v(k) - v i(k)]                                      (1)

where a is a weighting vector derived from the application of some scalar function to 
the current status measurements S corresponding to the vectors in v.  The nature of the 
function applied to S and the specific subset of vectors selected from V determine the 
group behavior exhibited by this version of alpha-beta teaming.
    The alpha set A contains a distinguished subset of elements: the agent or agents 
with the highest status value. An agent with the highest status in the cohort has no 
alpha caste; A=ø. These agents are the ø-alpha  agents and cannot experience alpha-
pull. The choice of a decision rule for a ø-alpha  agent is limited two possibilities:   
 (1) don’t move; and (2) move away from the team along a vector derived from the B-
vectors (beta-push). In the first option, the ø-alpha5  identifies the location of highest 
known status and acts as a stationary beacon for the rest of the team. This is a 
conservative strategy that   saves energy and ensures that the agent remains at the top 
of the heap, but does not immediately explore the region around the highest intensity 
reading. The second option uses some form of beta-push to move the ø-alpha away 
from the team. This is a risky strategy because the status of the ø-alpha may decrease, 
but it provides more information to the team and can possibly shorten convergence 
time.  
    The beta set B0 also contains a distinguished subset of elements: the agent or agents 
with the lowest status value. These ø-beta  agents represent the social floor of the 
team, and always use some form of alpha-pull to improve their status.  
    The remaining members of the cohort have non-empty alpha and beta sets.  Such an 
agent can experience the effects of both alpha-pull and beta-push. There are many 
possible decision rules for determining the next heading based on the partition {A0, 
B0}. In general, an agent must decide whether to be radical or conservative in its 
attempt to improve its status. The approach taken here is to provide three classes of 
behavior. For an agent team with N agents the update rules are:

1. The ø-alpha agents use the conservative decision mode and remain immobile: 
     vi(k+1) = vi(k).

2. The m agents in V with the highest status values self-select alpha behavior and use 
5 Although there may be more than one ø-alpha , we use the singular hereafter.



the following update rule:  vi(k+1) = vi(k) +  u[v* (k) - vi(k)], where v* (k) is the 
location of a ø-alpha agent, selected at random, and u is a factor that provides pressure 

to move beyond the alpha agent along a line passing through the points v* (k) and  
vi(k). Note that u > 1.0 must hold for improvement.

3. The remaining N-m agents in V self-select beta behavior and use the following 
update rule: vi(k+1) = vi(k) + a(k)[v(k) - vi(k)], where v(k) are all members of Ai, and 

a(k) is the corresponding vector with elements aj = sj/D, and 

D = ∑ sk, k=1, N            (2)

Under this regime, self-selected alpha agents attempt to exceed the performance of the 
stationary ø-alpha agent by attempting to overrun it.  Self-selected beta agents compute 
a weighted average of the alpha vectors based on normalized status values and move 
towards the resultant. A conservative beta agent seeks to improve its status to the 
average status of its corresponding alpha set by moving to the point of the center-of-
mass of the alpha set. This “safety in numbers” approach provides a tendency to 
aggregate in the most current region of highest known performance, but averages many 
alpha status positions to reduce noise and the influence of outliers. This behavior 
provides the beta population with some inertia, but still retains the tendency to 
improve the status of the population on average.
    The important parameters in this regime are u, the “overrun factor” that determines 
the amount by which an alpha will attempt to move beyond a ø-alpha agent, and the 
alpha ratio, defined as  =m/N, that determines the proportion of alpha agents exploring 
the search space.  

Figure 1: A team of 50 agents start in the upper right and locate a source at the center of the 
figure.  The source intensity drops to zero and agents disperse to the right to locate another 
source. The source reappears in the lower center and agents once again converge upon it.  



Figure 2: A team of 50 agents start in the upper right and eventually locate a source at the 
lower left. The annular region around the source results from alpha agents continuously 
searching around the source. The search trajectory is typical of an alpha-beta agent team. 

4  Simulations and Results
The alpha-beta coordination strategy was simulated in an ideal 2-D world using ideal 
agents. The intent of these initial simulations was to study the convergence and 
coordination properties of alpha-beta rather than evaluate alpha-beta in a realistic 
environment. The simulations provide a best-case baseline against which various 
complications such as communications noise and sensor noise can be evaluated later 
on. The world is free of obstacles, ambient noise, communications errors and 
convection currents that make the source intensity field non-stationary and time-
varying. Ideal agents are point-masses with no area, so crowding is not an issue.  Ideal 
agents have noise-free sensors, and movement on each step is bounded. 
    The target source was a radial emitter with exponential decay factor b and a uniform 
random noise component w:

                Z(r) = w  +  exp -(r • b)      (3)
     
where r is the radial distance from the origin. The metric of interest for this study is the  
mean-squared distance from the target, a measure of the team’s learning rate and  steady-
state convergence error. For each simulation run, alpha-beta agents are initially 
positioned with the same distribution in the x-y plane.  A control group comprising 
agents with identical starting points but with knowledge of the source location provide 
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Figure 3. Mean-squared error vs. step for u=2.0 and (1) R=0.1 (upper); (2) R=0.2; (3) R=0.4; 
(4)R=0.5(lower); (6) R=0.6;(7)R=0.8; (8)R=1.0(third from top).  Convergence is for ß=0.5. 
Notice the diminishing returns for ß>0.5.
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Figure 4: Mean-squared error vs. step for R=0.5 and: (1) u=2.0; (2) u=3.0 ; (3) u=4.0;(4) 
u=8.0;(5) u=10.0(upper). 

learning curve for the team.  Figures 1 and 2 show typical traces of alpha-beta agents. 



The simulation results confirm that the team can find a source under ideal conditions. 

The alpha ratio is R critical to effective search. A critical mass of alpha agents is 
needed to influence the beta agents to follow the alpha trajectory. A ratio of not less 
than 0.4 is needed for reliable search given a u value of 2.0. Maximum convergence 
rate and minimum steady-state mean-squared error occur at R=0.5. Figure 3 shows the 
learning curves for various alpha-beta ratios. Convergence rate is somewhat sensitive 
to the alpha u parameter as expected, favoring greater values of u at the expense of 
increased steady-state mean squared error. Very large values of u slow the convergence 
rate and lead to larger steady-state errors.

5 Related Work
The emergence of global behavior from local interactions among autonomous agents 
has been studied extensively. Investigations of collective behavior in robots are 
considerably more rarefied, and studies involving collective search are rarer still.   The 
foraging problem [Arkin & Hobbs 1993, Goss & Deneubourg 1992, Mataric 1994, 
Steels 1990], in which robots collect objects scattered in the environment, is a 
canonical problem related to the source location problem.        
    The alpha-beta strategy falls squarely in the behavior-based control camp [Brooks 
1991, Brooks 1986, Mataric 1992].  Mataric (1994;1995) describes group behaviors in 
terms of combinations of basis behaviors invoked by sensor inputs. Flocking, a 
commonplace group behavior,  comprises the primitive basis behaviors of safe-
wandering, homing, aggregation, and dispersion. Following and aggregation make up 
surrounding, and herding is composed of surrounding and flocking.  Flocking, homing, 
following, aggregation, and dispersion are all behaviors that arise under alpha-beta 
coordination, but are not accomplished by compositions of explicitly programmed 
basis behaviors. Different behaviors are obtained in alpha-beta coordination through 
variations on the update equation (1).Goldberg and Mataric [1997] describe pack and 
caste criteria for partitioning a robot team to achieve arbitration of spatial interference.  
Their approach shares with alpha-beta the concept of behavioral switching based on the 
collective state. The dynamics-based approach [Large, Henrik, and Bajcsy 1997]  is also 
similar to alpha-beta in its use of of a vector-based dynamical system to generate robot 
behaviors. Social entropy, a measure of the behavioral diversity in a robot team based 
on information entropy, has been presented in [Balch 1997].  This is a potential metric 
for alpha-beta regimes and we will investigate its application in future research.    

6  Discussion and Future Work
We have demonstrated the concept of dynamic social partitioning as a means to provide 
collective benefits to an agent team searching for source targets. Initial simulations 
confirm the ability of the team to find a source and stabilize the steady-state mean-
squared error.    
   Our future research will focus on further investigations of alternative forms of alpha-
beta algorithms inspired by molecular dynamics and statistical mechanics. We intend to 
investigate new forms of interaction rules that are based on non-linear functions of the 



entire measurement set rather than on partitions of the measurements. We will also 
investigate dynamic adjustment of the alpha u parameter and the alpha/beta ratio  
through reinforcement learning techniques under the alpha-beta regime presented in this 
paper. Simulations involving more realistic environments containing obstacles, 
convection effects on chemical plumes, and more detailed models of robotic vehicles 
will be conducted on parallel processors for large numbers of agents if required. 
Ultimately, we will attempt to implement alpha-beta strategy on actual robotic 
vehicles. 
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